

COMPUERTA CORTAFUEGOS

Modelo **FDMR.** Las compuertas cortafuegos circulares serie FDMR, funcionan como separadores entre dos sectores de incendios. Pueden instalarse tanto en paramentos verticales como horizontales. Disponen de un burlete perimetral en ambos extremos para asegurar la estangueidad entre la compuerta y los conductos de aire.

Características:

- Clasificación El120 ($v_e h_o i \leftarrow \rightarrow o$) S
 - (E) Integridad
 - (I) Aislamiento
 - (h_o) Aplicación en forjado. Montaje en paramento horizontal.
 - (v_{e}) Aplicación en muro o pared flexible. Montaje en paramento vertical.
 - (i \leftarrow →o) Simétrica (indistintamente del sentido del aire). Apta para fuego en ambas direcciones
 - (S) Estanqueidad. Para humos fríos y calientes.
- Certificada según norma EN 15650 (Ventilación de edificios Compuertas cortafuegos)
- Clasificada de acuerdo a norma EN 13501-3+A1 (Clasificación a partir de datos obtenidos en ensayos de resistencia al fuego de productos y elementos utilizados en las instalaciones de servicio de los edificios: Conductos y compuertas resistentes al fuego)
- Ensayada de acuerdo a norma EN 1366-2 (Ensayos de resistencia al fuego de instalaciones de servicio Parte 2: Compuertas Cortafuego)
- Estanqueidad de la compuerta de acuerdo a la norma EN 1751: Clapeta: mínimo clase 2

Carcasa: mínimo clase C

- Velocidad máxima con la compuerta abierta 12 m/s.
- Diferencia de presión máxima 1200 Pa
- Dispone de un orificio de inspección para acceso al interior de la compuerta.
- \bullet La temperatura en el lugar de instalación está permitida en un rango de -30 °C a +50 °C.

Dimensiones:

ø100 mm a ø800 mm

Modelos:

FDMR.01 Accionamiento manual y

térmico en el exterior de la compuerta con carcasa de

protección

FDMR.40 Servomotor eléctrico 230 v. AC con muelle de retorno

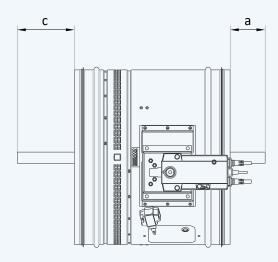
Belimo BFL/BFN/BF 230-T con dos contactos auxiliares

FDMR.50 Servomotor eléctrico 24 v.

AC/DC con muelle de retorno Belimo BFL/BFN/BF 24-T con dos contactos auxiliares

FDMR

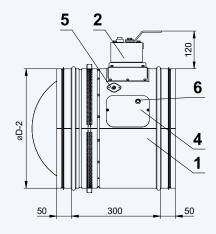
DATOS TÉCNICOS

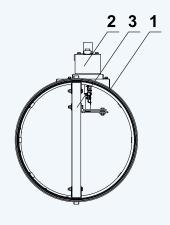


Tamaño øD	a	С		Peso [kg] Mecanismo de control Manual Motorizado		Hoja th.	Motor con muelle de retorno	Control mecanico
FDMR 100	-	-	2.9	3.1	0.0031	20	BFL	M1
FDMR 125	-	-	3.2	3.4	0.0062	20	BFL	M1
FDMR 140	-	-	3.3	3.5	0.0085	20	BFL	M1
FDMR 150	-	-	3.5	3.7	0.0103	20	BFL	M1
FDMR 160	-	-	3.6	3.8	0.0123	20	BFL	M1
FDMR 180	-	-	4.0	4.2	0.0166	20	BFL	M1
FDMR 200	-	-	4.3	4.5	0.0215	20	BFL	M1
FDMR 225	-	-	4.8	5.0	0.0275	25	BFL	M1
FDMR 250	-	9	5.1	5.3	0.0354	25	BFL	M2
FDMR 280	-	24	5.7	5.9	0.0462	25	BFL	M2
FDMR 315	-	42	6.5	6.7	0.0606	25	BFL	M2
FDMR 355	-	62	8.2	8.3	0.0776	30	BFL	M2
FDMR 400	-	84	9.3	9.4	0.1015	30	BFL	M2
FDMR 450	-	109	10.4	10.8	0.1318	30	BFN	М3
FDMR 500	-	134	11.7	12.1	0.1661	30	BFN	М3
FDMR 560	-	164	13.4	13.8	0.2123	30	BFN	М3
FDMR 630	19	199	15.5	17.7	0.2735	30	BF	M4
FDMR 710	59	239	27	29.2	0,3446	40	BF	M4
FDMR 800	104	284	32.4	34.6	0,4448	40	BF	M5

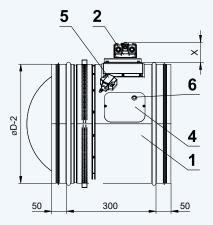
FDMR

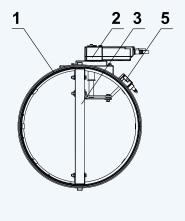
Solapamiento de la aleta de la compuerta




SERIE FD FDMR

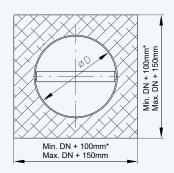
FDMR.01

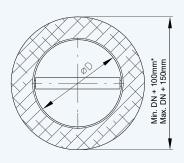

- 1. Carcasa
- 2. Mecanismo
- 3. Lama de apertura/cierre
- 4. Tapa de inspección
- 5. Etiqueta del sensor
- 6. Registro para camara


FDMR.40 / .50

- Carcasa
 Mecanismo de accionamiento
 Lama de apertura/cierre
 Tapa de inspección

- 5. Mecanismo de arranque termoeléctrico BAT
- 6. Registro para camara

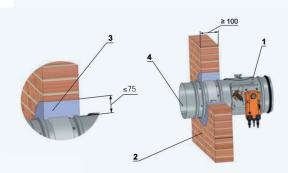

x-53 mm (BFL)* x=72 mm (BFN)* x=78 mm (BF)*



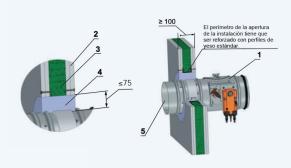
FDMR

Dimensiones de la apertura del conducto de la instalación

- * Dimensiones válidas para FDMR. * La apertura de la instalación puede ser inferior a DN + 100mm Si el material cortafuego puede ser instalado correctamente.

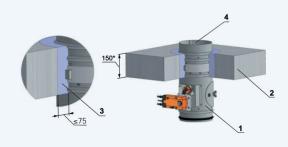


SERIE FD FDMR


Instalación en construcción de pared maciza

Posición:

- 1. Compuerta cortafuego
- 2. Construcción en muro rígido
- 3. Cemento o yeso
- 4. Conducto


Instalación en construcción de pared de cemento o yeso

Posición:

- 1. Compuerta de incendios
- 2. Placa de yeso
 3. Lana mineral (el tipo dependrá de la construcción)
- 4. Cemento o yeso 5. Conducto

Instalación en construcción en techo macizo

Posición

- 1 Compuerta cortafuego 2 Construcción en techo macizo
- 3 Cemento o yeso
- 4 Conducto

- * min. 110 Hormigón / min. 125 Hormigón aireado
- * Alrededor del perímetro

Los esquemas que se muestran son meramente ilustrativos

FDMR

Tabla de Selección

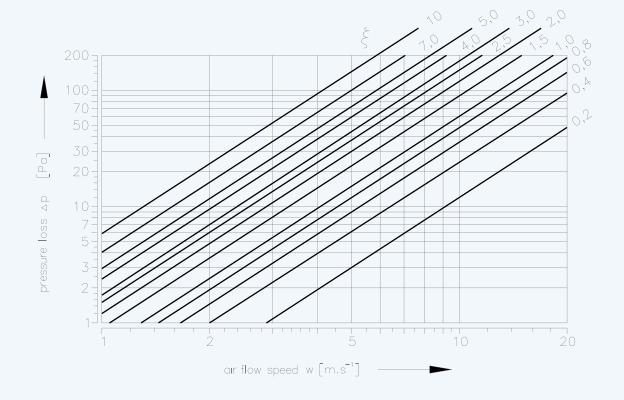
Q (m ³ /h) (l/s)	Diámetro mm.	100	125	160	200	250	315	355	400	450	500	560	630
150	Vn (m/s) Pt (Pa) LwA	5,31 46 27	3,40 15 13										
200	Vn (m/s) Pt (Pa) LwA	7,07 82 37	4,53 26 23	2,76 6 5									
300	Vn (m/s) Pt (Pa) LwA	10,61 185 50	6,79 58 36	4,14 13 18									
400	Vn (m/s) Pt (Pa) LwA		9,05 103 45	5,53 23 27	3,54 5 9								
500	Vn (m/s) Pt (Pa) LwA		11,32 161 52	6,91 36 34	4,42 7 17								
600	Vn (m/s) Pt (Pa) LwA			8,29 52 40	5,31 11 23	3,4 5 11							
700	Vn (m/s) Pt (Pa) LwA			9,67 71 45	6,19 15 28	3,96 7 16							
800	Vn (m/s) Pt (Pa) LwA			11,05 93 50	7,07 19 32	4,53 9 21	2,85 3 5						
1000	Vn (m/s) Pt (Pa) LwA				8,84 30 39	5,66 14 28	3,56 4 12	2,81 2 4					
1500	Vn (m/s) Pt (Pa) LwA				13,26 67 52	8,49 32 41	5,35 9 25	4,21 5 17	3,32 3 10				
2000	Vn (m/s) Pt (Pa) LwA					11,32 57 50	7,13 16 35	5,61 9 27	4,42 5 19	3,49 3 11			
2500	Vn (m/s) Pt (Pa) LwA						8,91 25 42	7,02 13 34	5,53 7 26	4,37 4 18	3,54 2 12		
3000	Vn (m/s) Pt (Pa) LwA						10,69 36 48	8,42 19 40	6,63 10 32	5,24 6 24	4,24 3 18	3,38 2 10	
3500	Vn (m/s) Pt (Pa) LwA							9,82 26 45	7,74 14 37	6,11 8 29	4,95 5 23	3,95 3 15	
4000	Vn (m/s) Pt (Pa) LwA							11,23 34 49	8,84 18 41	6,99 10 34	5,66 6 27	4,51 3 20	3,56 2 12
4500	Vn (m/s) Pt (Pa) LwA							12,63 44 53	9,95 23 45	7,86 13 37	6,37 7 31	5,08 4 23	4,01 2 16
5000	Vn (m/s) Pt (Pa) LwA								11,05 29 49	8,73 16 41	7,07 9 34	5,64 5 27	4,46 3 19

LeyendaVn (m/s): Velocidad nominal m/s
Pt = Pérdida de carga en Pa
LwA: Potencia sonora en dB(A)

DATOS TÉCNICOS

Cálculo de pérdida de presión

$$\Delta p = \xi \cdot \rho \cdot \frac{w^2}{2}$$


Δp [Pa] Pérdida de presión

w [m.s-1] Velocidad de flujo de aire en la sección nominal de la compuerta

ρ [kg.m³] Densidad del aire

Coeficiente de pérdida de presión local para la sección nominal de la compuerta (véase Tab. 11.1.1.)

Determinación de pérdida de presión usando diagrama p=1,2kg.m³

DATOS TÉCNICOS

Coeficiente de pérdida de presión local ξ (-)

D	100	125	140	150	160	180	200	225	250	280	300
ξ	2.736	2.099	1.781	1.527	1.272	0.929	0.636	0.892	0.747	0.627	0.576
D	315	350	355	400	450	500	560	600	630	710	800
ξ	0.531	0.471	0.455	0.393	0.344	0.307	0.273	0.258	0.243	0.111	0.099

Nivel de salida acústica corregido con el filtro A

$$L_{WA} = L_{W1} + 10 \log(S) + K_A$$

L_{WA} [dB(A)] Nivel de salida acústica corregido con el filtro A

 L_{W1} [dB] Nivel de salida acústica L_{W1} relacionado con la sección de 1 m² (véase Tab.1)

S [m²] Sección transversal del conducto K_A [dB] Corrección del filtro de peso A (viz Tab.2)

Nivel de salida acústica en rangos de octava.

$$L_{Woct} = L_{W1} + 10 \log(S) + L_{rel}$$

L_{Woct} [dB] Espectro de salida acústica en rango de octava

 L_{W1} [dB] Nivel de salida acústica L_{W1} relacionado con la sección de 1 m² (véase Tab.1)

S [m²] Sección transversal del conducto

L_{rel} [dB] Nivel relativo que expresa la forma del espectro (véase Tab.3)

Tabla de valores acústicos

Tab.1 Nivel de salida acústica L_{W1} relacionado con la sección de 1 m²

		۶

w [m/s ⁻¹]	0,1	0,2	0,3	0,4	0,6	0,8	1	1,5	2	2,5	3	3,5
2	9	11,5	14,7	16,9	20,1	22,3	24,1	27,2	29,4	31,2	32,6	33,8
3	16,7	22,1	25,3	27,5	30,7	32,9	34,6	37,8	40	41,7	43,2	44,4
4	24,2	29,6	32,8	35	38,1	40,4	42,1	45,3	47,5	49,2	50,7	51,9
5	30,0	35,4	38,6	40,8	44	46,2	47,9	51,1	53,3	55,1	56,5	57,7
6	34,8	40,2	43,3	45,6	48,7	51	52,7	55,8	58,1	59,8	61,2	62,4
7	38,8	44,2	47,3	49,6	52,7	55	56,7	59,9	62,1	63,8	65,2	66,4
8	42,3	47,7	50,8	53,1	56,2	58,4	60,2	63,3	65,6	67,3	68,7	69,9
9	45,4	50,7	53,9	56,1	59,3	61,5	63,3	66,4	68,6	70,4	71,8	73
10	48,1	53,5	56,6	58,9	62	64,3	66	69,1	71,4	73,1	74,5	75,7
11	50,6	56	59,1	61,4	64,5	66,7	68,5	71,6	73,9	75,6	77	78,2
12	52,8	58,2	61,4	63,6	66,8	69	70,7	73,9	76,1	77,9	79,3	80,5

SERIE FD FDMR DATOS TÉCNICOS

Corrección del peso del filtro A Tab.2

W [m/s ⁻¹]	2	3	4	5	6	7	8	9	10	11	12
K _a [dB]	-15,0	-11,8	-9,8	-8,4	-7,3	6,4	-5,7	-5,0	-4,5	-4,0	-3,6

Tab.3 Nivel relativo que expresa la forma del espacio L_{rel}

f [Hz]

w [m/s ⁻¹]	63	125	250	500	1000	2000	4000	8000
2	-4,5	-6,9	-10,9	-16,7	-24,1	-33,2	-43,9	-56,4
3	-3,9	-5,3	-8,4	-13,1	-19,5	-27,6	-37,4	-48,9
4	-3,9	-4,5	-6,9	-10,9	-16,7	-24,1	-33,2	-43,9
5	-4,0	-4,1	-5,9	-9,4	-14,6	-21,5	-30	-40,3
6	-4,2	-3,9	-5,3	-8,4	-13,1	-19,5	-27,6	-37,4
7	-4,5	-3,9	-4,9	-7,5	-11,9	-17,9	-25,7	-35,1
8	-4,9	-3,9	-4,5	-6,9	-10,9	-16,7	-24,1	-33,2
9	-5,2	-3,9	-4,3	-6,4	-10,1	-15,6	-22,7	-31,5
10	-5,5	-4	-4,1	-5,9	-9,4	-14,6	-21,5	-30
11	-5,9	-4,1	-4	-5,6	-8,9	-13,8	-20,4	-28,8
12	-6,2	-4,3	-3,9	-5,3	-8,4	-13,1	-19,5	-27,6

